Comparison of Novel Recurrent Neural Network Over Artificial Neural network in Predicting Email spammers with improved accuracy
نویسندگان
چکیده
The main aim is to compare Novel Recurrent Neural Network over Artificial in predicting Email spammers with improved accuracy. Material and Methods : This research study contains two groups namely Network. Each group consists of a sample size 10 the parameters are calculated using clincalc preset as alpha 0.8, beta 0.2 CI 90%. Results Discussion has highest accuracy 97.96% when compared it 93.79% Electronic Mail spam prediction significance value p=0.000(p<0.05) that significantly better. G-power 80%. When used predictor for electronic mail, performance analysis outperforms best results than performance.
منابع مشابه
scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network
today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...
Artificial Neural Network Model for Predicting Insurance Insolvency
In addition to its primary role of providing financial protection for other industries the insurance industry also serves as a medium for fund mobilization. In spite of the harsh economic environment in Nigeria, the insurance industry has been crucial to the consummation of business plans and wealth creation. However, the continued downturn experienced by many countries, in the last decade, se...
متن کاملDistillation Column Identification Using Artificial Neural Network
 Abstract: In this paper, Artificial Neural Network (ANN) was used for modeling the nonlinear structure of a debutanizer column in a refinery gas process plant. The actual input-output data of the system were measured in order to be used for system identification based on root mean square error (RMSE) minimization approach. It was shown that the designed recurrent neural network is able to pr...
متن کاملEstimation of Reference Evapotranspiration Using Artificial Neural Network Models and the Hybrid Wavelet Neural Network
Estimation of evapotranspiration is essential for planning, designing and managing irrigation and drainage schemes, as well as water resources management. In this research, artificial neural networks, neural network wavelet model, multivariate regression and Hargreaves' empirical method were used to estimate reference evapotranspiration in order to determine the best model in terms of efficienc...
متن کاملComparison of the Accuracy of Nonlinear Models and Artificial Neural Network in the Performance Prediction of Ross 308 Broiler Chickens
This study aimed to investigate and compare nonlinear growth models (NLMs) with the predicted performance of broilers using an artificial neural network (ANN). Six hundred forty broiler chicks were sexed and randomly reared in 32 separate pens as a factorial experiment with 4 treatments and 4 replicates including 20 birds per pen in a 42-day period. Treatments consisted of 2 metabolic energy le...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: E3S web of conferences
سال: 2023
ISSN: ['2555-0403', '2267-1242']
DOI: https://doi.org/10.1051/e3sconf/202339904025